If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-13t^2+96t+4=0
a = -13; b = 96; c = +4;
Δ = b2-4ac
Δ = 962-4·(-13)·4
Δ = 9424
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{9424}=\sqrt{16*589}=\sqrt{16}*\sqrt{589}=4\sqrt{589}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(96)-4\sqrt{589}}{2*-13}=\frac{-96-4\sqrt{589}}{-26} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(96)+4\sqrt{589}}{2*-13}=\frac{-96+4\sqrt{589}}{-26} $
| 3s+10=56+4 | | -7x+1=-8+2x | | 4(x+1=4(2-x) | | 10p-3=2(12+4p)-7p | | 15+8d=-6(4d-9) | | .3x-0.06+0.1x=1.54 | | x/7+-90=-80 | | 12.57+0.05(x+3)=13.32-0.13x | | 12=n/2+-6 | | 4-2(x-3)=3x-5 | | 7.55=5/6n+5 | | 7^n=12 | | 24=-4f-7f | | (-2l^2)+80l-1200=0 | | 9y+26=2(y-1) | | 1+4b-2b=-3 | | 9.89-13.1y=-12.5y+17.09 | | 4x+5+2x=27 | | 3x+4=×-6 | | 2=w/4-4 | | x/2=-7=-3 | | 5(1×+x)=5x+5 | | 2x-12=1/2+18 | | 12/4=48/m | | 8=3(x-2)-x | | 2-1/2n=1/4n+14 | | 4=-28+8x | | 9=v+4÷v+12 | | 3x-44=x+22 | | 4x-3=3x+7+2x | | 8x(40+7)=(8x)+(8x7) | | 133r=62 |